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Abstract —An efficient Moving mesh algorithm with fast
solver is proposed for remeshing the parameterized
computation domain so as to embed finite element rds into
optimization algorithms for optimizing the shapes ©
electromagnetic devices. The proposed method hasetimerits
of conserving the original mesh structure with mininal mesh
deformation. The developed algorithm has been ap@gd to
TEAM workshop problem No. 25. The reported resultsare
used to showcase the efficiency and validity of thedgorithm.

I. INTRODUCTION

Optimization of the shapes of electromagnetic devic
has become an important issue in product desigrthén
optimization procedure, finite element method (FEM)
usually used to compute the objective function [iring
the optimization process, the shapes of electroetagn
devices are inevitably changed; therefore the nudstine
devices needs to be regenerated for each FEM catigut
It is also well known that data transfer from tleiables of
the optimization method to new meshes in FEM
computation is always a challenge. For examplethé
geometry of the computation domain is built and riesh
on that is generated by commercial software whigh i
separated from the FEM program, it is always diffi¢co
rebuild the geometry and regenerate the meshes
automatically. Also, the regeneration of mesh imeti
consuming, especially in 3 dimensional (3D) proldeand
the newly generated mesh generally has no reldtipngth
the previous one, making the previous FEM solutiah
directly available for the new FEM computation wlving
nonlinear problem.

Mesh smoothing algorithms have been extensively
exploited to improve the mesh quality and, amorigeis,
Laplacian smoothing is one of the most popular oetH?2].
Lately a related type of smoothing, namely Winslow
smoothing, is proposed to alleviate or guard agaimessh
folding in the process of mesh smoothing [3]. Ojtation-
based smoothing methods are used to guarantee an
improvement in the mesh quality by minimizing atjzadar
mesh quality metric [4].

In this paper, mesh smoothing methods are intratitice
move the meshes in the optimization procedure iiclwtine
position of the nodes on the boundary are changed.
efficient mesh moving algorithm with fast solver is
proposed for moving the meshes on the parameterized
computation domain while embedding FEM into the
optimization method in order to optimize the shapés
electromagnetic devices.

In the proposed algorithm, the mesh of the ingisdpes
of the electromagnetic devices is generated anul \tlikh a
change in the shapes of the device, the initialhnvei be
moved adaptively to the new design. The proposed
algorithm can be applied to remesh complex two-
dimensional (2D) and three-dimensional (3D) geoitetr
shapes and save considerable time when regenetagng
meshes. The new moving mesh algorithm has the srafrit
conserving the original structure of the mesh waitimimal
mesh deformation, as the mesh smoothing methods can
smooth out the incremental positions of all the imgsints
in the computation domain. Another merit of the gosed
method is that when solving time stepping equation
nonlinear equation, the result of the previous F&Muition
can serve as a good initial solution for subsequetiv
computation, as the increment of each point is lsarad
each point is in the same material after reconstmiof the
mesh. Furthermore, in the proposed algorithm, tleshm
information is stored and modified in memory, which
avoids the need to retrieve the mesh informatiomfthe
disk at each optimization step.

II. MOVING MESHALGORITHM

When optimizing several parameters  of
electromagnetic device, the shape of the deviahanged
at each optimization step. A novel moving mesh wetis
proposed to obtain the new mesh according to the ne
shape of the device, instead of rebuilding the ggomand
regenerating the mesh.

In the proposed moving mesh algorithm, an initfe e
of the electromagnetic device is set up accordmghe
range of the optimization parameters. Usually
parameters of the initial shape are the averageeval its
upper and lower bounds. An initial mesh is generate the
initial shape of the device. At each optimizatioteps
changes in the parameters of the device can bddevad
as a change in the boundary of the device. Accgrttirthe
changes in boundary of the computation domain,ntksh
can be moved based on the initial mesh. In thiepape
mesh moving algorithm is described in 2D, but ib dze
extended to 3D problems in a straightforward manner

an
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A. Laplacian Smoothing

The basic idea of the moving mesh algorithm based o
Laplacian smoothing can be illustrated by a singdample
in Fig. 1. The initial mesh of a fixed initial shapf the
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electromagnetic device is shown in Fig. 1 (a). Thape of
the boundaryl'; is parameterized and it needs to be
optimized while the shape &f remains unchanged.
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Fig. 1. (a) Mesh on the original geometry. (b) Mesththe geometry of the
changed shape.

When the shape df; in Fig. 1(a) needs to be changed to
I'c as shown in Fig. 1(b), the coordinates of somerioit
mesh points in Fig. 1(a) should be adjusted acoghyli
The incremental coordinates of each interior poirtgAx,
Ay) are variables and satisfy the following Laplace’s
equation, as the Laplace’'s equation can smoothtiuait
incremental coordinates of the mesh points inside t
computation domain:
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where; ug(b), ug(a) are the coordinates of the point bp
andr., respectively.
The mesh point coordinates in Fig. 1(b) can beinbth
by the sum of the solution of equation (1) andrtbeiginal
coordinates in Fig. 1(a).

B. Weighted Laplacian Smoothing

Laplacian smoothing method is easy to implement and
efficient. However the method is not guaranteedvark
sometimes when inverting mesh elements. A weighted
Laplacian smoothing method based on optimizatiothate
which is more resilient to mesh folding is introddcin [4].
The weighted Laplacian smoothing method is uset thie
aim to guarantee an improvement in the mesh quhipty
minimizing a particular mesh quality metric. Cormgxarto
other smoothing method, their main drawback is rthei
computational expense in evaluating the weight anhe
edge in the mesh.

. NUMERICAL EXPERIMENT

The proposed method is applied to TEAM workshop
problem No. 25 [5]. The goal of this problem isojatimize
the shape of a die mold to obtain the best perfocmaf
permanent magnets. Fig. 2(a) is the model of tkenbld
with the electromagnet for the orientation of thagmetic
axis of the magnetic powder. The die mold is desttiby
an internal circle of radiug and by an external ellipse
represented by, Lsand L4, as shown in Fig. 2(b). The
objective functionw for the optimization problem is given

by:

W= Z; [(Bxp‘ ~B, f+(B, ~B, )2]

wheren is the number of specified points=(0); B,, and
By, are computed values along the line &f;andB,, are
specified aﬁXp:l.Scose), Byo=1.5sin@) (T).
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Fig. 2. (a) Die mold with electromagnet. (b) Optzation parameter of the
die mold.

The mesh on the optimal shape of die mold with the
parameter&;= 8.94,L, = 17.85,L; = 15.28,L, = 16.68 is
shown in Fig. 3(b). Two cases of extreme defornmatd
the shape of the die mold are studied and theme fslding
in the mesh, as shown in Fig. 3 (c) and (d), rebpy.

To do 100 times of remeshing, it takes about 2brsds
using moving mesh algorithm while 55 seconds aexed
to regenerate mesh with commercial software. Inemth
words, a significant of computing can be saved gishe
proposed technique.

Fig. 3. Mesh on (a) initial shape of die mold; @iptimal shape of the
problem; (c) first case of extreme deformationha# tie mold (d) second
case of extreme deformation of the die mold
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